Multicore Gibbs Sampling in Dense, Unstructured Graphs

نویسندگان

  • Tianbing Xu
  • Alexander T. Ihler
چکیده

Multicore computing is on the rise, but algorithms such as Gibbs sampling are fundamentally sequential and may require close consideration to be made parallel. Existing techniques either exploit sparse problem structure or make approximations to the algorithm; in this work, we explore an alternative to these ideas. We develop a parallel Gibbs sampling algorithm for shared-memory systems that does not require any independence structure among the variables yet does not approximate the sampling distributions. Our method uses a look-ahead sampler, which uses bounds to attempt to sample variables before the results of other threads are made available. We demonstrate our algorithm on Gibbs sampling in Boltzmann machines and latent Dirichlet allocation (LDA). We show in experiments that our algorithm achieves near linear speed-up in the number of cores, is faster than existing exact samplers, and is nearly as fast as approximate samplers while maintaining the correct stationary distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIMD parallel MCMC sampling with applications for big-data Bayesian analytics

We present a single-chain parallelization strategy for Gibbs sampling of probabilistic Directed Acyclic Graphs, where contributions from child nodes to the conditional posterior distribution of a given node are calculated concurrently. For statistical models with many independent observations, such parallelism takes a Single-Instruction-Multiple-Data form, and can therefore be efficiently imple...

متن کامل

Rapidly Mixing Gibbs Sampling for a Class of Factor Graphs Using Hierarchy Width

Gibbs sampling on factor graphs is a widely used inference technique, which often produces good empirical results. Theoretical guarantees for its performance are weak: even for tree structured graphs, the mixing time of Gibbs may be exponential in the number of variables. To help understand the behavior of Gibbs sampling, we introduce a new (hyper)graph property, called hierarchy width. We show...

متن کامل

Understanding Concurrency for Graph Workloads in Large Scale Multicores

Algorithms operating on a graph setting are known to be highly irregular and unstructured. This leads to workload imbalance and data locality challenge when these algorithms are parallelized and executed on the evolving multicore processors. Previous parallel benchmark suites for shared memory multicores have focused on various workload domains, such as scientific, graphics, and vision. However...

متن کامل

On the hardness of sampling independent sets beyond the tree threshold

We consider local Markov chain Monte-Carlo algorithms for sampling from the weighted distribution of independent sets with activity λ, where the weight of an independent set I is λ. A recent result has established that Gibbs sampling is rapidly mixing in sampling the distribution for graphs of maximum degree d and λ < λc(d), where λc(d) is the critical activity for uniqueness of the Gibbs measu...

متن کامل

Bayesian nonparametric models for bipartite graphs

We develop a novel Bayesian nonparametric model for random bipartite graphs. The model is based on the theory of completely random measures and is able to handle a potentially infinite number of nodes. We show that the model has appealing properties and in particular it may exhibit a power-law behavior. We derive a posterior characterization, a generative process for network growth, and a simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011